Pointwise convergence of vector-valued Fourier series
نویسندگان
چکیده
منابع مشابه
Pointwise convergence of Fourier series
In the early 19 century, J. Fourier was an impassioned advocate of the use of such sums, of course writing sines and cosines rather than complex exponentials. Euler, the Bernouillis, and others had used such sums in similar fashions and for similar ends, but Fourier made a claim extravagant for the time, namely that all functions could be expressed in such terms. Unfortunately, in those days th...
متن کاملMean Convergence of Vector–valued Walsh Series
Given any Banach space X, let L X 2 denote the Banach space of all measurable functions f : [0, 1] → X for which f 2 := 1 0 f (t) 2 dt
متن کاملOn L Convergence of Fourier Series of Complex Valued Functions
In the present paper, we give a brief review of L 1-convergence of trigonometric series. Previous known results in this direction are improved and generalized by establishing a new condition.
متن کاملPointwise Convergence of Trigonometric Series
We establish two results in the pointwise convergence problem of a trigonometric series [An] £ cne inl with lim Hm £ I bTck | = 0 |n|< -x. * Jn-»oo \k\-n for some nonnegative integer m. These results not only generalize Hardy's theorem, the Jordan test theorem and Fatou's theorem, but also complement the results on pointwise convergence of those Fourier series associated with known 1}-convergen...
متن کاملConvergence of Fourier Series
The purpose of this paper is to explore the basic question of the convergence of Fourier series. This paper will not delve into the deeper questions of convergence that measure theory illuminates, but requires only the basic principles set out by introductory real and complex analysis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2013
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-013-0935-0